
PyRegen v1.0 User’s Manual

1

Table of Contents

– Preview . 3

– Quick Start . 3

– Licensing . 3

– 1 Introduction . 5

– 2 User Input . 6

– 2.1 CEA Inputs .6

– 2.2 Chamber/Nozzle Geometry . 8

– 2.3 Coolant Inlet Properties .9

– 2.4 Cooling Channel Geometry . 11

– 3 Program Output . 15

– 3.1 Console Output . 15

– 3.2 Main Output . 16

– 3.3 Graphs . 16

– 3.4 File Output . 19

– 4 Case Run . 20

– 5 Software Errors . 23

– 5.1 Errors from Libraries . 24

– 5.2 Input Errors . 25

– 5.3 Python Errors . 26

– 6 Contact . 27

2

Preview

Quick Start

For Windows OS make sure you have Windows 8.1+, and then either:

• Download and run the executable from the website.

• Download the source code from Github, make sure you have all
the requirements installed and run the ”RUN.py” file.

For Linux OS make sure you have Ubuntu 20.04+ LTS, Debian 11+ and
then:

• Download the source code from Github, make sure you have all
the reuirements installed and run ”python3 RUN.py” from the
project folder opened in terminal.

The dependencies and requirements, as well as instructions on how to
install them can be found on the Github repository, in the requirements.md
file.

Licensing

PyRegen v1.0 is distributed under the GNU Affero General Public License
v3.0 (AGPL 3.0). You can download and modify the software for free, under
the condition that any derivative works are shared under the same license.
You can find additional information regarding the license on the GNU website
or on the PyRegen v1.0 Github repository.

3

Links

– Github repository: github.com/creatorandrew86/PyRegen-v1.0

– GNU AGPL v3.0: gnu.org/licenses/agpl-3.0.html

– CEA Documentation: readthedocs.io/rocketcea

– CoolProp Documentation: CoolProp.org/documentation.html

Any time a link or a website is referenceb below, you can access it directly
from here.

4

https://github.com/creatorandrew86/PyRegen-v1.0
https://www.gnu.org/licenses/agpl-3.0.html
https://rocketcea.readthedocs.io/en/latest/
https://coolprop.org/develop/documentation.html

1 Introduction

This document is the user’s manual for the PyRegen software. As PyRe-
gen v1.0 is the only version released at the moment, the user’s manual will
feature images and references to that version only. Future versions will come
with an improved or rewritten user’s manual, which you will be able to find
on the website after any new release.

All versions of PyRegen are GUI based programs, making for very easy
user input. The program output is also controlled from the GUI; however, it
contains console output and files written by the program.

From a technical standpoint, PyRegen uses a quasi-1D flow assumption
for the coolant and a corrected 1D heat equation for the wall heat transfer,
with the NASA CEA software handling the gas-side analysis. PyRegen v1.0
only supports rectangular channels with constant or variable sizes. A more
detailed technical explanation is provided in section 3.

Thus, PyRegen acts as a middle ground between purely empirical, simple
analysis and CFD. Although less accurate than a 3D CFD solution, the very
fast nature of the program, in both user input and execution time, makes
iterating through possible designs much faster and more convenient.

PyRegen is written in Python 3.12, using additional libraries. If you
download the source code from Github, you may have to install or upgrade
the libraries mentioned in the requirements file. The program requires a
minimum of Windows 8.1, or Ubuntu 20.04 LTS and Debian 11. If you
download the executable file, the same operating system requirements apply,
but the required libraries are contained within the file. The source code is
130 KB in size, and the executable file is around 76 MB.

This document will further guide the user on the program input and
output, possible errors, and a case run.

5

2 User Input

The user input for PyRegen is divided into sections, both conceptually
and physically. The GUI accepts inputs in 3 different tabs, with the following
logic:

• Tab 1 - CEA Inputs / Chamber and Nozzle Geometry

• Tab 2 - Coolant Initial Properties

• Tab 3 - Cooling Channels Size

Section 2 is also divided following the same logic as the tabs, on individual
groups of inputs, that are further detailed and clarified.

2.1 CEA Inputs

The Fuel and Oxidizer inputs have two variants, normal and custom
input.

In the normal input, highlighted with red on the image below, the user
selects a fuel/oxidizer from the given variants, and then, optionally, an entry
temperature for the propellant. If there is no propellant temperature given,
the program will assume the CEA default temperature.

Figure 1: Propellant Selection

6

If custom fuel/oxidizer is chosen, the user will have to manually fill a
text input, containing the definition of the propellant according to the CEA
required input. An example is given for both the oxidizer and fuel custom
inputs, but the full, detailed version of the input can be found on the NASA
CEA documentation page (readthedocs.io) or the User’s Manual for the soft-
ware. The custom fuel input is presented in the images below.

Figure 2: Custom Fuel Input

Figure 3: Custom Fuel Example

Note: Custom fuel/oxidizer also support mixtures of propellants and
user given enthalpy and density values.

7

The Mixture Ratio is a dimensionless value equivalent to the mass ratio
of oxidizer to fuel (O/F) inside the chamber.

2.2 Chamber/Nozzle Geometry

The nozzle geometry is outlined in the interface by the title ”Geometric
Parameters” and is highlighted with blue on the image below.

Figure 4: Chamber/Nozzle Geometry Inputs

The Contraction Ratio represents the ratio of the chamber area to the
throat area.

The Nozzle Area Ratio represents the ratio of the nozzle exit area to
the throat area, also known as expansion ratio.

PyRegen can calculate the throat radius using one of two input given by
the user. If the throat radius is given, there is no other calculation needed. If
the design mass flow is given, the throat density and velocity are calculated
from the CEA output, and then the throat radius. One of the options must
be selected.

The Characteristic Length is a property of the propellant mixture
that reflects how fast the mixture can burn within the combustion chamber.
Mathematically, it is equal to the ratio of the chamber volume to the throat

8

area. You can easily find typical values for the characteristic length of many
fuel combinations.

The nozzle geometry can be selected by the user from 3 options.

• Conical Nozzle: Most basic form of nozzle, used in many small, amateur
level rocket engines. The nozzle angle is the angle the nozzle wall makes
with the throat symmetry line

• Bell Nozzle: The most common type of nozzle among modern rocket
engines, the Nozzle Length input represents the desired length of the
nozzle as a percentage of the conical nozzle with the same expansion
ratio.

• The upload points file lets the user input a nozzle profile through the
use of a text file. The format of the file is further detailed below.

PyRegen custom nozzle accepts a file in text or DAT format, with no
header or title. The file should have as many lines as points on the nozzle,
and 3 columns: x coordinate; y coordinate; area ratio at point x.

Note: As of version 1.0 the custom nozzle is not yet fully refined, so it is
recommended to use with caution. Possible errors may arise because of an
undetected fault in the code, it will be revised as of later versions.

2.3 Coolant Inlet Properties

Coolant initial properties as well as the range for the regenerative cooling
analysis are described in Tab 2.

9

Figure 5: Tab 2

The entries under Coolant Definition are all at the entry of the coolant.
The coolant entry and exit represent the boundaries of the cooling jacket,

represented as the distance from the Injector Plate (IP) of the entry/exit
boundaries.

The number of stations represents the number of points of analysis across
the whole engine. A fraction of these points will be analyzed for regenerative
cooling, depending on the length of cooling jacket specified by the user.

Note: If ”Upload Points” is used, the number of stations must be equal
to the number of points in the file.

The specified number of stations are divided as follows:

• Chamber Section - 35%

• Convergent Section - 6%

• Throat Region - 15%

• Divergent Section - 44%

The percentages of the number given are rounded to the nearest integer,
and the divergent section number is given by the remaining number of points.

10

2.4 Cooling Channel Geometry

PyRegen offers two variants for cooling channel geometry: step geometry
and smooth segment geometry, each being rectangular channels.

Step Geometry refers to a ”step” of constant width and height.
Smooth Segment Geometry refers to a ”smooth segment” with linearly/cubically

varying width and height.
The cooling jacket can be divided in any number of steps or segments.
The geometry input is situated in Tab 3.

Figure 6: Tab 3

11

After selecting the channel geometry type, one of two windows will pop
up.

Figure 7: Stepped Channel Geometry

Figure 8: Smooth Segment Channel Geometry

12

The Add button in the windows hides the current step/segment window
and creates a new step/segment. You can come back to each step and change
values, before submitting from the Finish button in the tab (Figure 9).

In Figure 7, the Step End entry represents the outlet of the current
step, as the distance from the Injector Plate, in meters. The ”Step End” of
the last step must coincide with the Coolant Exit from the Cooling Jacket
Definition.

In Figure 8, the Segment Inlet and Segment Outlet entries represent
the inlet and outlet of the current segment, as distances from the Injector
Plate, in meters. The ”Segment Inlet” of the first segment must coincide
with the Coolant Entry, and the ”Segment Outlet” of the last segment
must coincide with the Coolant Exit from the Cooling Jacket Definition.

The potentially confusing part of this input is further explained through
graphics on the Github repository of the software.

Figure 9: Tab 3

13

The wall material may be chosen from the given options, or a specific,
constant value thermal conductivity (in SI units) may be given.

Figure 10: Tab 3

14

3 Program Output

There are several ways in which PyRegen outputs and displays the re-
sults. They are explained here in a chronological order from the moment the
program runs.

3.1 Console Output

During the main function execution, it prints to console the main engine
parameters and the results of the analysis at every point, as observed in
Figure 11.

Figure 11: Console Output

Note: All of the output results are generated by the Case Run presented
in Section 4.

Note: The console output presented in Figure 11 continues up to Station
110, but is only shown up to Station 33.

15

3.2 Main Output

The main output is generated right after the main function finishes run-
ning, and contains the general values of interest for the user.

Figure 12: Main Output

3.3 Graphs

PyRegen offers a highly customizable graphing output, with either plot-
ting results or the nozzle wall contour, generated by the software or uploaded
by the user.

The Plot Nozzle button in Figure 10 simply plots the x and y coordi-
nates of the nozzle wall contour on a separate window. The relevant docu-
mentation for the plot window (done with matplotlib) can be found on their
website.

16

For the Plot Graph option in Tab 3, the user is given the following
options in the drop down menu ”Select Values to Plot”:

Figure 13: Tab 3

Figure 14: Tab 3

17

Figure 13 shows the Option 1 for plotting open in Tab 3. This lets the
user select one value to plot against the x coordinate of the nozzle in the
cooling jacket section.

Figure 14 shows the Option 2 for plotting open in Tab 3. If the user picks
”-” as the selection (also the defalut) the plotting will not include any second
value, just the first. If the user selects any other value, the plot will contain
2 y-axes with the first being option 1 and the second option 2, being plotted
against the x coordinate of the nozzle.

If the solver ran more than once, the user can select ”Run 1” (or any
other run, depending on how many runs the solver performed) and the plot
will contain the same value (option 1) for the current run and the specified
run.

Figure 15: Tab 3

Below in Figure 16 you can see the resulting plot generated by choosing
Twg (hot-wall temperature) as option 1, and P (coolant pressure) as option
2.

18

Figure 16: Plot Visualization

3.4 File Output

The full text file output contains a more detailed engine description, con-
taining the user input and some CEA results, along with the regenerative
cooling analysis results (from the Console Output).

This type of output only contains one file. The file format is easily read-
able and understandable, so no further description is given here. You can
find the example file in the Github repository, CASE RUN folder.

19

4 Case Run

This is an example run of the PyRegen v1.0 software. For a more detailed
explanation, as well as the output file, you can check the Github repository
of PyRegen v1.0, in the folder named ”CASE RUN”.

The figures in this file containing the output variants of the program
are provided by this case run, with the only difference being the number of
stations raised from 140 here to 200.

Note: The software accepts some inputs in different units (SI, Imperial..)
even though a specific unit is written in the parantheses next to the name.
The unit written there is a mistake, and is only related to version 1.0.

Figure 17: Case Run Tab 1

20

Figure 18: Case Run Tab 2

Figure 19: Case Run Tab 3

21

Figure 20: Case Run Channel Geometry

Figure 21: Case Run Main Output

22

Figure 22: Case Run Plotted Values

5 Software Errors

PyRegen can send out errors in two forms:

• Console Errors

• Interface Errors

The Interface Errors originate only from an impossible input on some
entries, or the lack of a required entry. The program returns if it encounters
an error, and the user can continue after fixing the problem in the input
section.

Console Errors can originate from:

• Imported Libraries(mainly CEA)

• Input Errors (detected by PyRegen)

• Python Errors

All of the aforementioned errors appear because of misinput, but they
differ in the way they are sent out and the effects they have. The variants
are going to be explained in further detail below.

23

5.1 Errors from Libraries

As the NASA CEA import is one of the most important outside parts
of PyRegen, it often represents the source of input errors. They generally
appear because a specified propellant temperature/enthalpy/density is out
of range (for the given state) or any contradictions between the propellant
definitions. A CEA return error generally looks like this:

Figure 23: CEA Console Error

To fix any error like this, verify your propellant inputs against the CEA
documentation, where you will also find the input ranges for any propellant
combination.

CoolProp is another important import in the functioning of the software,
and it requires a very precise input to work properly, thus, a misinput here can
result in a fatal error. Any ”out of range” inputs in the coolant temperature
or pressure (See Tab 2) will result in an error looking like:

Figure 24: CoolProp Console Error

You can find the input ranges for any coolant supported by CoolProp in
the documentation on their website.

Speaking of the user interface, there are not many errors that can typically
appear. The most common one is a bad window error when you try to reopen
a step/segment window (SEE Chapter 2.4) after terminally closing it. The
console will show the message from Figure 25, and you will not be able to
reopen the window. However, this does not affect the running of the program.

24

If you want to change any variables in the affected step/segment, you will
have to reset the channel geometry. This is a mistake on the side of PyRegen
that will be revised in further releases.

Figure 25: Tkinter Console Error

Other modules such as numpy and scipy may return ValueErrors, but
these originate entirely from bad user input. If one of them appears, check
your input makes sense, then retry. If the problem persists, feel free to
contact us.

5.2 Input Errors

Besides the bad input errors, that are generally signaled by an error in the
running of the software, PyRegen is equipped to catch missing input errors
in the inputs processing phase. An input error originating from an empty
coolant pressure entry can look like:

Figure 26: Empty Input Error

For the cooling channel geometry inputs, Tkinter messageboxes are used
for displaying errors and returning, in case of empty or bad inputs. Errors
may look like:

25

Figure 27: Tkinter Messagebox Error

For the moment, version 1.0 is not really good at catching errors in the
inputs processing phase. Improved capabilities and more protection will be
added in future releases.

5.3 Python Errors

This section is dedicated to the users who downloaded the source code.
Python errors may arise because of:

• Outdated version

• Missing imports

• Wrong file names

For the first two causes, make sure you have all the requirements men-
tioned in the Github repository installed and up to date. Some of them may
require addition to path, depending on your system.

If you rename the .py modules, or you do not put them in the same folder,
as specified in the README file, in the Github repository, the program will
not work due to a missing import error. You have to verify the naming
scheme makes sense, or run the code from the executable file.

Other python-related errors are generally related to bad input, detailed
in chapter 5.1.

26

6 Contact

Thank you for downloading and using PyRegen! If you have any questions
regarding the software, or any message for us, feel free to contact us at
pyRegen@gmail.com, or on the website, in the ”Support” menu.

We are still in the development process, so any feedback is highly appre-
ciated.

27

	Introduction
	User Input
	CEA Inputs
	Chamber/Nozzle Geometry
	Coolant Inlet Properties
	Cooling Channel Geometry

	Program Output
	Console Output
	Main Output
	Graphs
	File Output

	Case Run
	Software Errors
	Errors from Libraries
	Input Errors
	Python Errors

	Contact

